Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Lew P Christopher

Lew P Christopher

Lakehead University, Canada

Title: Sustainable production of bioenergy and value-added products for the growing low-cost bioresource economy

Biography

Biography: Lew P Christopher

Abstract

The global trend for production of bioenergy and bioproducts from renewable  resources is currently steered  by three important drivers: 1) diminishing reserves of readily recoverable oil and fluctuating oil prices; 2) growing food and energy needs; and 3) increasing greenhouse gas (GHG) emissions. The global production of plant biomass, over 90% of which is lignocellulose,  is about 2 x 1011  tons per year, with up to 2 x 1010 tons  of  the  primary  biomass  remaining  potentially  accessible  and available for bioprocessing. Current estimates indicate that the global energy demand will continue to increase and reach 653 exajoules (EJ) in 2020) and 812 EJ in 2035. At a price of $107 per oil barrel, the cost of the lignocellulosic  feedstock (US  $2.6/GJ at  $50/dry ton biomass)  is lower than natural gas ($3.3/GJ) and crude oil ($17.2/GJ). However, at the current low oil prices, the cost of lignocellulose conversion ($20/GJ) exceeds  nearly  twice that  of  fossil  fuels,  which necessitates  further optimization of the biomass conversion routes. Lignocellulosic biorefineries are   the  ultimate  integrated  biomass  conversion facilities   that  are nowadays viewed as one of the major economic pillars of the emerging global Bioeconomy. However,  less than 10%  of thel global fuels and chemicals production is currently  biobased. This is mainly  due to the fact that bioproducts are  not yet cost-competitive  to their petroleum-based counterparts. As the biomass feedstock comprises about 50% on average of the total production costs, it has now been recognized that low-value biomass and biomass waste streams can provide a cost-effective alternative  to improve  the economic viability  of  biorefineries.  Among other, this approach offers  two major advantages: 1) significantly lower bienergy production costs; 2) significantly reduce waste treatment costs, carbon footprint and GHG emissions. This presentation will discuss opportunities for valorization of industrial, agricultural and municipal biomass waste   and  related technological challenges that we need  to overcome in  our  transition  to  a  low-cost  bioresource  economy and biobased society.

Recent Publications:

1.    Christopher LP (2013) Integrated Forest Biorefineries: Challenges and Opportunities. Royal Society of Chemistry, Cambridge, UK (ISBN978-184973-321-2).

2.    Christopher LP (2012) Adding value prior to pulping: Bioproducts from hemicellulose. In: Global Perspectives on Sustainable Forest Management, InTech, Chapter 14, pp. 225-246.

3.  Christopher LP, Hemanathan K, Zambare VP (2014) Enzymatic biodiesel: Opportunities and challenges. Appl Energy 119: 497-520.

4.    Talluri S, Raj SM, Christopher LP (2013) Consolidated bioprocessing of untreated switchgrass to hydrogen by the extreme thermophile Caldicellulosiruptor saccharolyticus DSM 8903. Bioresour Technol 139: 272-279.

5.  Upadhyaya B, DeVeaux LC, Christopher LP (2014) Metabolic engineering as a tool for enhanced lactic acid production. Trends Biotechnol 32: 637–644.