Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Juan Matos Lale

Juan Matos Lale

University of Concepcion, Chile

Title: PHOTO-LMEn: Biochar-based materials for the sustainable photoproduction of liquid and gaseous molecules to energy

Biography

Biography: Juan Matos Lale

Abstract

rnBiochar-based materials applications in catalytic and photocatalytic reactions related with the photoproduction of liquid and gaseous molecules will be presented. Sawdust of a soft wood was used to prepare biochars for H2 photoproduction on Au-TiO2/biochars under visible irradiation. A remarkable increase in the photoactivity of the composite up to a factor about 3 times higher than the commercial catalyst free of biochars was found and ascribed to the surface pH of biochars. Biomass-derived molecules such as furfural, chitosane, and saccharose were used to prepare hybrid C-TiO2 materials by solvothermal synthesis. Hybrid TiO2-C supports led to an important enhancement in the catalytic activity of Pd-based catalysts in the electrooxidation of formic acid with a maxima density power up to 3.3 times higher than the same catalyst on a commercial carbon. Pd-based catalysts supported on hybrid Biochar-TiO2 supports can be designed to control the selectivity of phenol hydrogenation to cyclohexanone or cyclohexanol (up to 100% yield) by controlling the chemical nature of the biochar supports. Up to 10 times higher photoactivity that the standard semiconductor was found in the photodegradation of methylene blue under visible-irradiated Biochar-based/TiO2 materials. An integrated approach will be presented to remark the potential of biochar-based sustainable catalysis and photocatalysis considering energy production and environmental considerations. It can be concluded that biochars-based materials show new perspectives for the sustainable catalysis and photocatalysis related with clean energy production, green and selective catalytic processes, and for the environmental remediation of polluted water by solar technology.rn